
Meltdown+Spectre/2018/dave@treblig.org 1

Meltdown & Spectre:
 Microarchitectural security bugs

https://meltdownattack.com/

Meltdown+Spectre/2018/dave@treblig.org 2

Meltdown & Spectre

Intro
Introduction to Processors
Fast processors
Side-channel attacks
Meltdown
Spectre 1
Spectre 2
Workarounds

Meltdown+Spectre/2018/dave@treblig.org 3

Intro

 Allow unprivileged programmes to read kernel
memory
 Demo of it being done via Javascript in a
browser through a VM !

But pretty hairy

 Not a software bug
 Hardware meets specifcation
 Most modern fast processors

Spectre more common, Meltdown rarer (Intel some ARM)

Some low end ARMs/Atoms are immune

Meltdown+Spectre/2018/dave@treblig.org 4

Processors (aka CPUs, Cores)

CPUs execute a stream of
 instructions, reading/writing
 memory and registers
Instructions:

Add, Multiply Load, Store,
Compare, Branch; all stored in memory

Memory:

Slow, but big; think of as having a

Single large address (e.g. 0...4 billion)

Registers:

Fast, but not many, e.g. 16

r0

CPU core

Registers
r0

r7
r0

CPU core

Registers
r0

r7

Memory
0

4GB

Meltdown+Spectre/2018/dave@treblig.org 5

Programs

 Sequences of instructions

At a series of memory locations

All just numbers

 Lets ignore how they get
 there, how they start
 running or how they stop
 Some special instructions

e.g. syscalls to enter OS, return, etc etc

0 5 1 0 Set r1= 0

1 1 2 3 Load r2 ← [r3]

2 a 33 1 Add r3,r3,#1

3 c 2 0 Compare r2,#END

4 b 0 7 Branch if-equal 7

5 a 11 1 Add r1,r1,#1

6 b 7 1 Branch always 1

7 7 55 1 Store result ← r1

8 f 00 0 exit

Simple string length

A
dd

re
ss

Meltdown+Spectre/2018/dave@treblig.org 6

Fetch, Decode, Execute (Simple)

 For every instruction:

Fetch it from memory

Decode it (e.g. 5/1/0 means Set r1=0)

Execute it (store 0 in r1)

 At least 3 clocks/instruction

Some times ‘executes’ take longer (e.g. a multiply)

F
0

D
0

E
0

F
1

D
1

E
1

F
2

D
2

E
2

F
3

D
3

E
3

F
4

D
4

E
4

F
5

D
5

E
5

F
6

D
6

E
6

F
1

D
1

E
1

Time

Branch!

Meltdown+Spectre/2018/dave@treblig.org 7

Pipelines

 Overlap instructions

Upto 1 instruction/cycle

 Branches get complex

throw away stuf

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
1

F
2

F
3

F
4

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
1

D
2

D
3

E
0

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
1

E
2

0 5 1 0 Set r1= 0

1 1 2 3 Load r2 ← [r3]

2 a 33 1 Add r3,r3,#1

3 c 2 0 Compare r2,#END

4 b 0 7 Branch if-equal 7

5 a 11 1 Add r1,r1,#1

6 b 7 1 Branch always 1

7 7 55 1 Store result ← r1

8 f 00 0 exit

Meltdown+Spectre/2018/dave@treblig.org 8

Caches: A fast small chunk of memory

 CPU clocks got faster

But memory latency lagged

e.g. 0.3ns CPU clock

 10ns RAM latency

30 cycles to fetch data

 Caches

Between core and memory

Often multiple levels

Shared between cores

F
0

F
1

F
2

F
3

F
4

D
0

D
1

D
2

D
3

D
4

E
0

E
1

E
1

E
1

E
2

E
3

E
4

CPU core

Registers
r0

r7

CPU core

Memory
0

4GB

Registers
r0

r7

Cache

Cache

Cache

Meltdown+Spectre/2018/dave@treblig.org 9

Caches: Allocation & Replacement

 Multiple ‘lines’

Hold one chunk of data from RAM

 Easiest way to fnd slot

e.g. address/lines remainder

 Replace when reused

Read 3008 – goes in slot 8 - SLOW

Read 3008 – read from slot 8 - FAST

Read 4008 – replaces slot 8 - SLOW

Read 3008 – read RAM again - SLOW

Lines Actual
address

Data

0 Free

1 Free

2 2002

3 2003

4 Free

5 Free

6 Free

7 2007

8 3008

9 5109

Meltdown+Spectre/2018/dave@treblig.org 10

Pipelines: Got more complex

 Split up more: Faster clocks
 Multiple execution units
 Lots of instructions in fight

Maybe over 100

 Instructions out-of-order

Skip an instruction while waiting for a result

Put them back at the end

 Branches even more costly

Must try and predict branches based on what they did before

Fetch

Dec DecDec Dec

+/- +/-
* FP

FP

Branch
pred

Meltdown+Spectre/2018/dave@treblig.org 11

Hyperthreading/SMT

 One complex pipeline running
 2 or more sets of code

Looks like multiple cores

 Shares complex things like

Branch prediction
All the execution units

Fetch

Dec DecDec Dec

+/- +/-
* FP

FP

Branch
pred

Fetch

Meltdown+Spectre/2018/dave@treblig.org 12

Virtual memory & permissions

 User processes can’t access
 each others memory

One ‘page table’ per process

 User processes can’t access
 kernel memory

‘privilege fag’ in pages

 You can swap

Page tables can have gaps that cause errors when accessed, to
cause disk to be read

0 3005

1 Disk

2 4000

3 3001

4 Disk

5

6 8000 Kernel!

7 8001 Kernel!

8 8002 Kernel!

9 8003 Kernel!

Meltdown+Spectre/2018/dave@treblig.org 13

Sidechannel attacks

 If CPU does what it is supposed to

Rely on the timing of instructions

 e.g. if a read is fast it’s in the cache

Which probably means someone else read it frst!

 Often slow exploits

Having to time things and wait

 Originally demonstrated in special cases

e.g. fnding out if another process was using crypto tables

Previously felt pretty obscure

Meltdown+Spectre/2018/dave@treblig.org 14

Meltdown!

 Read kernel memory!
 (a) means the rest is just prediction
 (b) loads from the kernel memory –
still happens on some systems, but protection guarantees
thrown away eventually
But not before (c) that uses it to choose an address to
access
 (d) Accesses memory later – at base+…. - fnds which one
is fast : The one that is fast corresponds to (b)’s value
Relies on CPU implementation getting data in (b) before it
notices permission error; some CPUs do, some don’t.

a Branch ….

b Load r1← kernel

c Load r2 ← [base+r1*4096]

d Time memory access

Meltdown+Spectre/2018/dave@treblig.org 15

Spectre v1

Get kernel to do it for you

Find somewhere in kernel that accesses
table based on user input

Of course kernel range checks it frst

 Speculation means load happens and
contaminates cache

a Cmp r1<table-size ?

b Branch if too big

c Load r2 ← [...r1]

d Load r3 ← [r2...]

e Time memory access

Meltdown+Spectre/2018/dave@treblig.org 16

Spectre v2

 Mistrain branch predictor to
 go where you want it!

Very hard, branch predictor algorithms
are complex; always assumed to be
unpredictable – they reverse engineered
it!

Only indirect branches normally

 Find somewhere in kernel that has the ‘loads’
 Hardest to exploit

Also hardest to fx!
 But with public proof-of-concept
 Almost all complex processors (i.e. with complex branch
predictors)

a Misuse branch in kernel
to...

b Load r2 ← [...r1]

c Load r3 ← [r2...]

d Time memory access

Meltdown+Spectre/2018/dave@treblig.org 17

Workaround: Meltdown

 ‘Page Table Isolation’

Keep two page tables

One for user-space has
no kernel pages at all

Switch everytime we
go in and out of kernel

Expensive

A bit better on newer
CPUs with ‘PCID’

dmesg|grep isolation

0 3005

1 Disk

2 4000

3 3001

4 Disk

5

6 8000 Kernel!

7

8

9

0 3005

1 Disk

2 4000

3 3001

4 Disk

5

6 8000 Kernel!

7 8001 Kernel!

8 8002 Kernel!

9 8003 Kernel!

User Kernel

Meltdown+Spectre/2018/dave@treblig.org 18

Workaround: Spectre v1

 Pointer sanitization

Any user pointer that’s checked needs
an extra barrier to stop the pipeline.

Special instruction (new?)

Only some architectures have them

Some masking tricks

 Need to fnd every use in kernel!

Compiler tools

Beware closed source modules

a Cmp r1<table-size ?

b Branch if too big

BARRIER!

c Load r2 ← [...r1]

d Load r3 ← [r2...]

e Time memory access

Meltdown+Spectre/2018/dave@treblig.org 19

Workaround: Spectre v2 [Retpoline]

 Avoid all indirect branches!

Find an instruction that doesn’t get branch prediction

‘ret’ - return from function

 Compiler changes
 Manual code needs checking
 Slower
 Doesn’t work on latest CPUs

Because they predicted returns

Needed ways to stop that

Meltdown+Spectre/2018/dave@treblig.org 20

Workaround: Spectre v2
 [Branch speculation fush/restriction]

 Before retpoline solution
 New microcode

Gives your CPU new instructions!

Changes the way branch predictor works

Stops predictions from userspace infuencing kernel

Protects hyperthreads from each other

 Might be faster on future chips

When they design them in rather than bodge on later

 Got to wait for microcode for your chip
 No microcode (or equivalent) on some RISC chips

Meltdown+Spectre/2018/dave@treblig.org 21

Summary

 A new type of attack

Probably more with similar idea coming

 Not currently easy to actually use Spectre

A few KB/s read
Hard to exploit remotely, but demonstrable

 Fixes are all pretty messy

All slow things down a bit

How much varies vastly depending on task and CPU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

