Meltdown & Spectre:

Microarchitectural security bugs

4/

https://meltdownattack.com/

1 Meltdown+Spectre/2018/dave@treblig.org

Meltdown & Spectre

‘Intro

‘Introduction to Processors
‘Fast processors
‘Side-channel attacks
‘Meltdown

‘Spectre 1

‘Spectre 2

‘Workarounds

2 Meltdown+Spectre/2018/dave@treblig.org

* Allow unprivileged programmes to read kernel
memory

- Demo of it being done via Javascript in a
browser through a VM !

But pretty hairy
- Not a software bug
- Hardware meets specification
- Most modern fast processors

Spectre more common, Meltdown rarer (Intel some ARM)
Some low end ARMs/Atoms are immune

3 Meltdown+Spectre/2018/dave@treblig.org

Processors (aka CPUs, Cores)

‘CPUs execute a stream of
Instructions, reading/writing
memory and regqgisters

‘Instructions:

Add, Multiply Load, Store,
Compare, Branch; all stored in memory

‘Memory:
Slow, but big; think of as having a
Single large address (e.g. 0...4 billion)
‘Registers:
Fast, but not many, e.qg. 16

4GB

Memory

CPU core

CPU core

Register
rQ

r7/

sters

]

4 Meltdown+Spectre/2018/dave@treblig.org

Programs

(7))
)
Q
- Sequences of instructions S
At a series of memory locations 051 0 Setrl=0
i —®» 1 1 2 3 Loadr2 « [r3]
A” JUSt numbers 2 a 33 1 Addr3,r3,#1
. - 3 ¢c 2 0 Comparer2#END
Lets ighore how they get AEERE T
there, how they start 5 a 11 1 Addrlrl#l
running or how they stop — R LR
7 7 55 1 Storeresult < rl
- Some special instructions 2600 0]
e.g. syscalls to enter OS, return, etc etc Simple string length

5 Meltdown+Spectre/2018/dave@treblig.org

Fetch, Decode, Execute (Simple)

- For every instruction:
Fetch it from memory
Decode it (e.g. 5/1/0 means Set r1=0)
Execute it (store 0 inrl)
- At least 3 clocks/instruction
Some times ‘executes’ take longer (e.g. a multiply)

Time

_— >
ENRNENRNANRNARRNERENANED

Branch!

6 Meltdown+Spectre/2018/dave@treblig.org

Pipelines

- Overlap instructions
Upto 1 instruction/cycle

- Branches get complex
throw away stuff

O T

oNy) = T

om. PO N

PmM. NG W

NM W ~T

Setrl=0

Load r2 « [r3]
Add r3,r3,#1
Compare r2,#END
Branch if-equal 7
Add r1,r1,#1
Branch always 1

N B

Store result < rl

© N o O N~ W N BB O
- N T ® T 0O 9 b O
o
O P P P N O F, W O

exit

FIF BB F F F F
5 6 MNEN1 2 3 4
D D|[D||BIBI D D | D
4 (5|6 NMEN 1 2 (3
E EE|EEIE E E
3 45 6B 1 2

Meltdown+Spectre/2018/dave@treblig.org

Caches: A fast small chunk of memory

+ CPU clocks got faster

But memory latency lagged

e.g. 0.3ns CPU clock
10ns RAM latency
30 cycles to fetch data
- Caches
Between core and memory
Often multiple levels
Shared between cores

Memory

4GB

F
2
D
1
E
o)

RmliND wT

M w Qg &~ T

E E
1 1 2

CPU core

wm &O

NI

Registers
rQ

(W4

CPU core

ache Registers
ro

r/

8 Meltdown+Spectre/2018/dave@treblig.org

Caches: Allocation & Replacement

Lines Actual Data
+ Multiple ‘lines’ I
Hold one chunk of data from RAM 1 Eree
- Easiest way to find slot 2 2002
e.g. address/lines remainder 3 2003
- Replace when reused : e
Read 3008 - goes in slot 8 - SLOW > Free
Read 3008 - read from slot 8 - ° Free
Read 4008 - replaces slot 8 - SLOW ! 2007
Read 3008 - read RAM again - SLOW ° 2008
9 5109

9 Meltdown+Spectre/2018/dave@treblig.org

Pipelines: Got more complex

+ Split up more: Faster clocks Branchiieieh

« Multiple execution units

DecDecDecDec

« Lots of instructions in flight
Maybe over 100

+ Instructions out-of-order

Skip an instruction while waiting for a result
Put them back at the end

- Branches even more costly
Must try and predict branches based on what they did before

10 Meltdown+Spectre/2018/dave@treblig.org

Hyperthreading/SMT

- One complex pipeline running
2 or more sets of code

Looks like multiple cores
- Shares complex things like

Branch prediction
All the execution units

Branch
pred

Fetch

Fetch

DecDec

DecDec

11 Meltdown+Spectre/2018/dave@treblig.org

Virtual memory & permissions

0
1
2
3
4
5
6
I
8
9

- User processes can’t access
each others memory

One ‘page table’ per process

+ User processes can’t access
kernel memory

‘privilege flag’ in pages
* YOUu can swap

3005
Disk
4000
3001
Disk

8000
8001
8002
8003

Kernel!
Kernel!
Kernel!
Kernel!

Page tables can have gaps that cause errors when accessed, to
cause disk to be read

12

Meltdown+Spectre/2018/dave@treblig.org

Sidechannel attacks

« If CPU does what it is supposed to
Rely on the timing of instructions

- e.g. iIf a read is fast it’s in the cache
Which probably means someone else read it first!

- Often slow exploits
Having to time things and wait

- Originally demonstrated in special cases
e.g. finding out if another process was using crypto tables
Previously felt pretty obscure

13 Meltdown+Spectre/2018/dave@treblig.org

a Branch

- Read kernel memory! b Load rl— kernel
+ (a) means the rest is just prediction ¢ Loadr2 — [base+r1*4096]
* (b) loads from the kernel memory - d Time memory access

still happens on some systems, but protection guarantees
thrown away eventually

But not before (c) that uses it to choose an address to
access

+ (d) Accesses memory later - at base+.... - finds which one
Is fast : The one that is fast corresponds to (b)’'s value

‘Relies on CPU implementation getting data in (b) before it
notices permission error; some CPUs do, some don't.

14 Meltdown+Spectre/2018/dave@treblig.org

_ a Cmp rl<table-size ?
‘Get kernel to do it for you b Branch if too big

Find somewhere in kernel that accesses ¢ Loadr2 < [.r]
table based on user input

d Load r3 « [r2...]
Of course kernel range checks it first e Time memory access

- Speculation means load happens and
contaminates cache

15 Meltdown+Spectre/2018/dave@treblig.org

a Misuse branch in kernel

+ Mistrain branch predictor to to...
go where you want it!
Very hard, branch predictor algorithms b Load r2 < [...r1]
are complex; always assumed to be
unpredictable - they reverse engineered c Loadr3 « [r2..]

it!
Only indirect branches normally
- Find somewhere in kernel that has the ‘loads’

d Time memory access

- Hardest to exploit
Also hardest to fix!
But with public proof-of-concept

- Almost all complex processors (i.e. with complex branch
predictors)

16 Meltdown+Spectre/2018/dave@treblig.org

Workaround: Meltdown

- ‘Page Table Isolation’

User Kernel
Keep two page tables 7 e 0 3005
One for user-space has 1 Disk 1 Disk
no kernel pages at all 2 4000 2 4000
Switch everytime we 3 3001 3 3001
go in and out of kernel 4 Disk 4 Disk
i 5 5
Expensive
_ 6 8000 Kernel! 6 8000 Kernel!
éPbl;ts I\)Neitt;e TP%'} I;’ewer 7 7 8001 Kernel!
d icolati 8 8 8002 Kernel!
mesg|grep isolation 5 9 8003 Kernell

17 Meltdown+Spectre/2018/dave@treblig.org

Workaround: Spectre vl

a Cmp rl<table-size ?

- Pointer sanitization b Branch if too big
Any user pointer that’s checked needs BARRIER!
an extra barrier to stop the pipeline. C Loadr2 « [..r1]
Special instruction (new?) d Load r3 « [r2..]
Only some architectures have them e Time memory access

Some masking tricks

* Need to find every use in kernel!
Compiler tools
Beware closed source modules

18 Meltdown+Spectre/2018/dave@treblig.org

Workaround: Spectre v2 [Retpoline]

« Avoid all indirect branches!
Find an instruction that doesn’t get branch prediction

‘ret’ - return from function

- Compiler changes
- Manual code needs checking
- Slower

- Doesn’t work on latest CPUs
Because they predicted returns
Needed ways to stop that

19 Meltdown+Spectre/2018/dave@treblig.org

Workaround: Spectre v2

[Branch speculation flush/restriction]

- Before retpoline solution

- New microcode
Gives your CPU new instructions!
Changes the way branch predictor works

Stops predictions from userspace influencing kernel
Protects hyperthreads from each other

- Might be faster on future chips
When they design them in rather than bodge on later

- Got to wait for microcode for your chip
- No microcode (or equivalent) on some RISC chips

20 Meltdown+Spectre/2018/dave@treblig.org

Summary

+ A new type of attack
Probably more with similar idea coming
- Not currently easy to actually use Spectre

A few KB/s read
Hard to exploit remotely, but demonstrable

- Fixes are all pretty messy
All slow things down a bit
How much varies vastly depending on task and CPU

21 Meltdown+Spectre/2018/dave@treblig.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

