
Meltdown+Spectre/2018/dave@treblig.org 1

Meltdown & Spectre:
 Microarchitectural security bugs

https://meltdownattack.com/

Meltdown+Spectre/2018/dave@treblig.org 2

Meltdown & Spectre

Intro
Introduction to Processors
Fast processors
Side-channel attacks
Meltdown
Spectre 1
Spectre 2
Workarounds

Meltdown+Spectre/2018/dave@treblig.org 3

Intro

 Allow unprivileged programmes to read kernel
memory
 Demo of it being done via Javascript in a
browser through a VM !

But pretty hairy

 Not a software bug
 Hardware meets specifcation
 Most modern fast processors

Spectre more common, Meltdown rarer (Intel some ARM)

Some low end ARMs/Atoms are immune

Meltdown+Spectre/2018/dave@treblig.org 4

Processors (aka CPUs, Cores)

CPUs execute a stream of
 instructions, reading/writing
 memory and registers
Instructions:

Add, Multiply Load, Store,
Compare, Branch; all stored in memory

Memory:

Slow, but big; think of as having a

Single large address (e.g. 0...4 billion)

Registers:

Fast, but not many, e.g. 16

r0

CPU core

Registers
r0

r7
r0

CPU core

Registers
r0

r7

Memory
0

4GB

Meltdown+Spectre/2018/dave@treblig.org 5

Programs

 Sequences of instructions

At a series of memory locations

All just numbers

 Lets ignore how they get
 there, how they start
 running or how they stop
 Some special instructions

e.g. syscalls to enter OS, return, etc etc

0 5 1 0 Set r1= 0

1 1 2 3 Load r2 ← [r3]

2 a 33 1 Add r3,r3,#1

3 c 2 0 Compare r2,#END

4 b 0 7 Branch if-equal 7

5 a 11 1 Add r1,r1,#1

6 b 7 1 Branch always 1

7 7 55 1 Store result ← r1

8 f 00 0 exit

Simple string length

A
dd

re
ss

Meltdown+Spectre/2018/dave@treblig.org 6

Fetch, Decode, Execute (Simple)

 For every instruction:

Fetch it from memory

Decode it (e.g. 5/1/0 means Set r1=0)

Execute it (store 0 in r1)

 At least 3 clocks/instruction

Some times ‘executes’ take longer (e.g. a multiply)

F
0

D
0

E
0

F
1

D
1

E
1

F
2

D
2

E
2

F
3

D
3

E
3

F
4

D
4

E
4

F
5

D
5

E
5

F
6

D
6

E
6

F
1

D
1

E
1

Time

Branch!

Meltdown+Spectre/2018/dave@treblig.org 7

Pipelines

 Overlap instructions

Upto 1 instruction/cycle

 Branches get complex

throw away stuf

F
0

F
1

F
2

F
3

F
4

F
5

F
6

F
7

F
8

F
1

F
2

F
3

F
4

D
0

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
1

D
2

D
3

E
0

E
1

E
2

E
3

E
4

E
5

E
6

E
7

E
8

E
1

E
2

0 5 1 0 Set r1= 0

1 1 2 3 Load r2 ← [r3]

2 a 33 1 Add r3,r3,#1

3 c 2 0 Compare r2,#END

4 b 0 7 Branch if-equal 7

5 a 11 1 Add r1,r1,#1

6 b 7 1 Branch always 1

7 7 55 1 Store result ← r1

8 f 00 0 exit

Meltdown+Spectre/2018/dave@treblig.org 8

Caches: A fast small chunk of memory

 CPU clocks got faster

But memory latency lagged

e.g. 0.3ns CPU clock

 10ns RAM latency

30 cycles to fetch data

 Caches

Between core and memory

Often multiple levels

Shared between cores

F
0

F
1

F
2

F
3

F
4

D
0

D
1

D
2

D
3

D
4

E
0

E
1

E
1

E
1

E
2

E
3

E
4

CPU core

Registers
r0

r7

CPU core

Memory
0

4GB

Registers
r0

r7

Cache

Cache

Cache

Meltdown+Spectre/2018/dave@treblig.org 9

Caches: Allocation & Replacement

 Multiple ‘lines’

Hold one chunk of data from RAM

 Easiest way to fnd slot

e.g. address/lines remainder

 Replace when reused

Read 3008 – goes in slot 8 - SLOW

Read 3008 – read from slot 8 - FAST

Read 4008 – replaces slot 8 - SLOW

Read 3008 – read RAM again - SLOW

Lines Actual
address

Data

0 Free

1 Free

2 2002

3 2003

4 Free

5 Free

6 Free

7 2007

8 3008

9 5109

Meltdown+Spectre/2018/dave@treblig.org 10

Pipelines: Got more complex

 Split up more: Faster clocks
 Multiple execution units
 Lots of instructions in fight

Maybe over 100

 Instructions out-of-order

Skip an instruction while waiting for a result

Put them back at the end

 Branches even more costly

Must try and predict branches based on what they did before

Fetch

Dec DecDec Dec

+/- +/-
* FP

FP

Branch
pred

Meltdown+Spectre/2018/dave@treblig.org 11

Hyperthreading/SMT

 One complex pipeline running
 2 or more sets of code

Looks like multiple cores

 Shares complex things like

Branch prediction
All the execution units

Fetch

Dec DecDec Dec

+/- +/-
* FP

FP

Branch
pred

Fetch

Meltdown+Spectre/2018/dave@treblig.org 12

Virtual memory & permissions

 User processes can’t access
 each others memory

One ‘page table’ per process

 User processes can’t access
 kernel memory

‘privilege fag’ in pages

 You can swap

Page tables can have gaps that cause errors when accessed, to
cause disk to be read

0 3005

1 Disk

2 4000

3 3001

4 Disk

5

6 8000 Kernel!

7 8001 Kernel!

8 8002 Kernel!

9 8003 Kernel!

Meltdown+Spectre/2018/dave@treblig.org 13

Sidechannel attacks

 If CPU does what it is supposed to

Rely on the timing of instructions

 e.g. if a read is fast it’s in the cache

Which probably means someone else read it frst!

 Often slow exploits

Having to time things and wait

 Originally demonstrated in special cases

e.g. fnding out if another process was using crypto tables

Previously felt pretty obscure

Meltdown+Spectre/2018/dave@treblig.org 14

Meltdown!

 Read kernel memory!
 (a) means the rest is just prediction
 (b) loads from the kernel memory –
still happens on some systems, but protection guarantees
thrown away eventually
But not before (c) that uses it to choose an address to
access
 (d) Accesses memory later – at base+…. - fnds which one
is fast : The one that is fast corresponds to (b)’s value
Relies on CPU implementation getting data in (b) before it
notices permission error; some CPUs do, some don’t.

a Branch ….

b Load r1← kernel

c Load r2 ← [base+r1*4096]

d Time memory access

Meltdown+Spectre/2018/dave@treblig.org 15

Spectre v1

Get kernel to do it for you

Find somewhere in kernel that accesses
table based on user input

Of course kernel range checks it frst

 Speculation means load happens and
contaminates cache

a Cmp r1<table-size ?

b Branch if too big

c Load r2 ← [...r1]

d Load r3 ← [r2...]

e Time memory access

Meltdown+Spectre/2018/dave@treblig.org 16

Spectre v2

 Mistrain branch predictor to
 go where you want it!

Very hard, branch predictor algorithms
are complex; always assumed to be
unpredictable – they reverse engineered
it!

Only indirect branches normally

 Find somewhere in kernel that has the ‘loads’
 Hardest to exploit

Also hardest to fx!
 But with public proof-of-concept
 Almost all complex processors (i.e. with complex branch
predictors)

a Misuse branch in kernel
to...

b Load r2 ← [...r1]

c Load r3 ← [r2...]

d Time memory access

Meltdown+Spectre/2018/dave@treblig.org 17

Workaround: Meltdown

 ‘Page Table Isolation’

Keep two page tables

One for user-space has
no kernel pages at all

Switch everytime we
go in and out of kernel

Expensive

A bit better on newer
CPUs with ‘PCID’

dmesg|grep isolation

0 3005

1 Disk

2 4000

3 3001

4 Disk

5

6 8000 Kernel!

7

8

9

0 3005

1 Disk

2 4000

3 3001

4 Disk

5

6 8000 Kernel!

7 8001 Kernel!

8 8002 Kernel!

9 8003 Kernel!

User Kernel

Meltdown+Spectre/2018/dave@treblig.org 18

Workaround: Spectre v1

 Pointer sanitization

Any user pointer that’s checked needs
an extra barrier to stop the pipeline.

Special instruction (new?)

Only some architectures have them

Some masking tricks

 Need to fnd every use in kernel!

Compiler tools

Beware closed source modules

a Cmp r1<table-size ?

b Branch if too big

BARRIER!

c Load r2 ← [...r1]

d Load r3 ← [r2...]

e Time memory access

Meltdown+Spectre/2018/dave@treblig.org 19

Workaround: Spectre v2 [Retpoline]

 Avoid all indirect branches!

Find an instruction that doesn’t get branch prediction

‘ret’ - return from function

 Compiler changes
 Manual code needs checking
 Slower
 Doesn’t work on latest CPUs

Because they predicted returns

Needed ways to stop that

Meltdown+Spectre/2018/dave@treblig.org 20

Workaround: Spectre v2
 [Branch speculation fush/restriction]

 Before retpoline solution
 New microcode

Gives your CPU new instructions!

Changes the way branch predictor works

Stops predictions from userspace infuencing kernel

Protects hyperthreads from each other

 Might be faster on future chips

When they design them in rather than bodge on later

 Got to wait for microcode for your chip
 No microcode (or equivalent) on some RISC chips

Meltdown+Spectre/2018/dave@treblig.org 21

Summary

 A new type of attack

Probably more with similar idea coming

 Not currently easy to actually use Spectre

A few KB/s read
Hard to exploit remotely, but demonstrable

 Fixes are all pretty messy

All slow things down a bit

How much varies vastly depending on task and CPU

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

